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Abstract.  Cities change constantly in different size and portions. Conventional methods in GIS help to 

measure and explain spatial change through geographic causalities using geo-located vectorial data. This 

research focuses on the question of how to analytically measure the gradual effects of changing size, 

shape and scale factors upon the parts and whole interactions in the built environment. Proposed method 

in this paper introduces an alternative approach that translates vectorial data to scalar and measures built 

environment on a relational basis.  The method developed for this question constructed upon Alexander’s 

“Theory of Wholeness,” Salingaros’ “Inverse Power-Law Scaling,” Tobler’s “First Law of Geography” 

and Shannon’s “Shannon’s Information Entropy” theories. Through a dynamic grid interface, the 

proposed analysis tool translates various morphologic scenarios into scalar data and calculates Entropy-

IQR (H) values specific for each grid-scale. For the analysis with various grid-scales, the cumulative of 

entropy-IQR values are inversely correlated to the degree of wholeness. Results obtained from the three 

groups of hypothetical case studies with slight and extreme differences prove the meaningful relationships 

between the spatial layouts and the entropy values created. The more extreme changes in the location and 

scale of the sub-constituents in the built system, the higher entropy that implies a lower degree of 

wholeness. For practitioners and local governments, the proposed method is allowing to run evidence-

based measuring of wholeness in the built environment either to report or visualize the relative change 

and to test the possible design scenarios or analytically evaluate the after-effects of urban design projects 

in various scales before the implementation. 
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1.      Introduction   

 

Tobler (1970), in his influential “First Law of Geography”, states that everything 

is related to each other but near things are more related than distant things. Waldo 

Tobler’s theory of geography seemed comprehensive and moderated and justified a 

number of assertions or theories on urban growth simulation (Miller, 2004). Miller 

states that, when it was first shared, the concepts of “nearness” and “relatedness” filled a 

gap needed in the core of spatial analysis and modeling. In the last decade, the rise of 

technology with geographic information systems established a ground in building a 

greater sophistication when measuring and analyzing various urban concepts (Miller, 

2004). Miller (2004), also states that we do not need to conclude whether or not 

Tobler’s First Law on nearness and relatedness justifies other empirical laws or 

descriptions or assertions on spatial formations. Since “nearness” and “relatedness” are 

space-related concepts they are related to diverse functionalities such as energy transfer 

or expenditure and so on. Miller in this sense notes that measuring the space through the 

concepts of near and related is not just to generate simple metric or geometric findings 
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but to develop new spatial attributes that will allow measuring and modeling the 

geographic space through new complex interactions.    

Correlation does not necessarily prove a causality. It can just imply an evidence 

that there is a relationship between two things. Two things with or without some other 

related variables can shape a certain causal relationship.  The relationship or nearness 

and relatedness between a certain unit of the spatial formation to the rest of the spatial 

system requires a definitive method setting a certain way of data measuring and 

modeling. This method is expected to rationalize the process of how measured entities 

are considered. Such a method is expected to generate descriptive or confirmative 

findings that may help to explain a certain causality between two phenomena. This is a 

certain way of autocorrelation that measures the spatial interaction between selected 

spatial variables (Miller, 2004). Choice problems appear to be more meaningful when 

considering spatial proximities (Miller, 2004). Agents in this sense, through established 

rules that model the most possible behaviors, predicts the consecutive steps  (Crooks et 

al., 2007; Macal & North, 2005). 

Miller and Wentz (2003) suggest that near is central to spatial analysis and it's 

more flexible and powerful than commonly appreciated. Gatrell (1983) states that 

geographers do not have a commonly approved definition of space so that we can 

develop a mathematical definition by considering a set of objects and the relations 

between them. This kind of relations can be either qualitative or quantitative. Miller’s 

comment for this is that geographers when thinking and discussing space, are using 

names or categories as meaningful phenomena on the land surface.  The common 

knowledge an practice with distinguishing goe-spaces from other geo-spaces is the 

shortest-path relation between them. Shortest-path relation between geographic entities 

in mapping systems determine measurements of site-specific geospatial attributes. 

Shortest-path relation, by a straight line between two entities, defines a euclidian 

distance on the analytical plane. The nearness that TFL introduces and Miller discusses 

is not euclidian distance but relative and interactive nearness. This is a quasi-metric 

distance allows making alternative cartographic transformations and other visualization 

techniques possible. 

Although, cyberspaces and the internet of things technology change and govern 

daily human life practices and shifts human-space interactions to a completely new level 

in the present time, one may question whether or not the concepts of relatedness and 

nearness of geographic space are significant like ever before. Places in the built 

environment are functionally getting nested and dissolved in and out of each other in 

cybernetics speed, spatial boundaries and time needed for real time-space interactions 

are no longer important. Both concepts beyond the shortest pathway of metric distance 

need to be explained by spatially continuous attributes that also explains a certain type 

of geographic interaction. In other words, in spatial terms, Miller’s discussion on 

nearness reminds and helps developing new implications on understanding the concept 

of relatedness that emerges in space through the information of spatial probabilities that 

can be called and represented via entropic interactions way of relationality. Entropic 

interaction way of spatial relatedness is a form of agent-based modeling approach that 

employes Shannon’s information entropy and models how spatial units of particular 

built areas co-create a gradual effect and deform an interface grid accordingly.  

One of the other important analysis and modeling functions for measuring the 

spatial relationality is the Visibility Graph Analysis (VGA) as a 2D layout analysis in 

Space Syntax method. Braaksma and Cook (Turner, 2001) first developed VGA as an 
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analysis of the built environments. The main purpose of the analysis is to calculate the 

co-visibility of various units through an adjacency matrix in the representation of the 

relationships (Turner, 2001). Based on quantifying the existing visibility relationships, 

the analysis tool “Depthmap” calculates and visualizes how satisfyingly visible a space 

based on its function. Later on, Turner and Penn (1999), parallel to the developments in 

space syntax method, proposed a comprehensive visibility analysis method considering 

of several graph metrics and measures that are being benefitted in Space Syntax. 

Briefly, the purpose of the VGA analysis is to generate a clustering coefficient. 

Clustering coefficient is the ratio of connected vertices to the number of vertices that are 

possibly connected. Visibility Graph Analysis, in its own terms, reveals the visible 

relationality of a built system embedded in its configuration and the degree of 

wholeness emerges through it. 

According to Jiang (2017), one of the scholars who densely study on the 

wholeness of complex space systems, the wholeness emerges through a life-giving 

order or a living structure. Although not similar to the method and the terms presented 

in this paper, he combines diverse methods from space syntax to various topology-

oriented geographic representations that view and measure the city and parts of the city 

as a whole. He measures the points, lines, and polygons, and in particular how these 

geometric primitives constitute living structures. 

Salingaros and West (1999) state that we cannot expect to describe a complex 

system by a field equation because the complex systems are correlational rather than 

casual. There is a relationship between concurrence and scaling. Hence, to grasp the 

complex systems the best description is probability distributions (Salingaros & West, 

1999). To measure this kind of complexity, every probability that is possible in a 

multiscalar multiplicity matters since information entropy measures the uncertainty 

arises through probability distribution. Correlation between the probability and entropy 

is parabolic and is further explained in the following part.  

One of the biggest concerns and motivation behind this research is the 

remarkable loss of scaling hierarchy that is first defined as “inverse-power scaling” by 

Salingaros and West (1999), in cities due to contemporary architectural practice and 

fashion fueled by massive decontextualized reproductions on urban land. Wholeness 

implies smaller elements and thus smaller scales than the large ones (Salingaros, 1997). 

This is also true for the scales. Change in size, form, and shape of the subunits in the 

built environment affects morphologic concurrence and adaptations and results as 

spatial incompatibility, disorganized complexity (Salingaros, 2018), and mental and 

physical discomfort for the users.   

 

2.     Method and Data: Why and how to use Shannon Information Entropy 

 

Entropy concept was first used as a term of thermodynamic systems in the 

nineteenth century. The second rule of thermodynamics says that every living or 

nonliving system has an amount of free energy, and it always moves towards 

equilibrium (Bailey, 2015) which the entropy increases to realize. In other words, a 

system spontaneously evolves towards a less ordered state. Nature tends to 

disorderliness more than order. The probability of a disordered or irregular occasion is 

higher than ordered and regular one (Shannon, 1948). There is an act of seeking 

equilibrium, and maximum entropy is thus what leads to disorderliness. Since the 

probability of a disordered state is higher than an ordered state, entropy always 
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increases but never decreases. Maximum entropy takes a system to the collapse and 

death. Briefly, energy or substance in nature cannot be vanished but evolve from one 

state to another. Entropy is the measure of this evolution or transformation as 

graphically illustrated in Figure 1. 

 

Figure 1. From the order to disorderliness: a graphic definition of entropy 

 

In addition to thermodynamic entropy, information entropy was first introduced 

by German mathematician Claude Shannon (1948) as a basic concept in information 

theory measuring the average missing information on a random source (Jat et al., 2007). 

Shannon’s entropy, originated from information theory, is a measure of uncertainty of 

conveyed information over a noisy channel (Bailey, 2015; Jat et al., 2007). The larger 

the value of Shannon’s entropy, the higher is the uncertainty of information conveyed. 

Shannon developed the mathematical explanation of the information theory and focused 

on how to minimize the loss of information in revealing a message on another point. 

Entropy (H), in this sense, is a measure of information. “H” is dependent on the number 

of information categories, K. Higher the number of categories conveyed by a particular 

information, less probability of the same type of categories to gather. High entropy is 

the most probable, and yet the least predictable state that leads to disorder (Versoza & 

Gonzales, 2010; Bailey, 2015). Hence, in such case, the entropy is always towards most 

probable or most likely state. When the entropy is the highest, the data categories 

embedded in the information get to the most random state where the most uncertainty 

occurs.  

The same approach is also valid for the built environment. Thus, Shannon’s 

entropy is convenient in measuring the uncertainty of morphologic occurrences in urban 

settings in various scale levels. The use of Shannon’s entropy in this research is 

expected to provide insights into the notions of randomness, typicality, and disorder 

about the hidden codes of the morphologic occurrences in cities. In the built context, 

employing the entropy concept is expected to find out the state of randomness and 

disorderliness nested in the relative distribution of built elements of all kind.  

The method, using Shannon’s entropy, helps to generate values for each grid 

unit as spatial attributes. Measuring the built clusters and comparing one to another in 

changing scales is the basis of the proposed method in understanding the interplay 

between scale and changing level of spatial uncertainty. Shannon's entropy in this 

respect has a critical role in translating and reproducing the data and providing a new 

insight or tendency towards disorderliness, about the nature of the analyzed 

morphologic co-occurrence. According to Leibovici (2009), use of Shannon’s entropy 

on the bare distribution of a particular number of data categories with different 

configurations does not help to describe the entropy of each configuration. Scholars in 

this respect suggest integrating some specific spatial aspects or control definitions into 

the entropy calculation (Leibovici, 2009).   

Shannon’s entropy was derived from information equation (Wang, 2016).  

Information equation is formulated as: 
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𝐼 𝑝 =  − 𝑙𝑜𝑔𝑏𝑃, 
𝑃 is the probability of the event happening; 

𝑏 is the base and the unit of measurement generated by the base 2 in information theory 

is bits.  

An exemplary calculation of the information by tossing a coin: 

There are two probabilities for a coin and they are 0,5 head and 0,5 tail. If we 

toss the coin and get either head or the tail, we get 1 bit of information as in the below 

equation and graph appears; 𝐼(𝑕𝑒𝑎𝑑)  =  − 𝑙𝑜𝑔𝑏(0.5)  =  1𝑏𝑖𝑡 
Maximum entropy is achieved when all probabilities are equally likely and there 

is no ability to guess. It is, in other words, the case of maximum surprise. In the case of 

a coin, the probability is 0,5 both for head and tail. It makes the uncertainty and thus the 

entropy maximum that is 1bit as appears in the graph in Figure 2. Minimum entropy 

occurs when one symbol is certain and others are impossible as in the graph. In other 

words, when there is no surprise, there is no uncertainty.  

 

 
 

Figure 2. Entropy vs. Probability for a two-class variable in case of a coin toss 

 
In physics, the word entropy has important physical implications as the amount of 

"disorder" of a system. In mathematics, a more abstract definition is used. The 

(Shannon) entropy of a variable X is defined as bits, where 𝑃(𝑥) is the probability 

that 𝑋 is in the state 𝑥, and 𝑃𝑙𝑜𝑔2𝑃 is defined as 0 if 𝑃 = 0. The joint entropy of 

variables 𝑋1, ………𝑋𝑛  is then defined by 

 

𝐻 𝑋 = − 𝑃 𝑥 𝑙𝑜𝑔2[𝑃 𝑥 ]𝑥 , 

 

𝐻 𝑋1, … , 𝑋𝑛 = − … 𝑃 𝑥1, … , 𝑥𝑛 𝑙𝑜𝑔2 𝑃 𝑥1, … , 𝑥𝑛  .

𝑥𝑛𝑥1

 

“𝐺” as unit-based built probability and Shannon’s Information Entropy (𝐻) by 

definition are two co-dependent spatial terms in the proposed method. 𝐺 is termed to be 

the measure of scale-based built density for each unit as illustrated in Figure 3 and 

formulated in the below equations. Entropy (𝐻), on the other hand, is the measure of 

uncertainty that each grid unit holds considering the connected units as illustrated in 

Figure 3 lower row 𝐺 for a built context implies scale responsiveness and is generated 

for every particular grid unit area while 𝐻 is generated for any unit area that is a 
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neighbor to eight connected equivalent units. It is simply the entropy emerged through 

the relative interaction among a particular unit area and its adjacent neighbors and is 

formulated in the equations (1), (2), and (3) in below. 

 

Figure 3. Unit positions and their interactions with adjacent units in the calculation 

 of G, P and H values 

 

Referring to Shannon’s entropy as formulated in below equations (1), (2), and (3), given 

𝑖  is a central unit adjacent to 8 equivalent units, 𝑛 is the 9 adjacent units that form 

square sub-regions throughout the grid system. 𝐺𝑖 , for the i
th 

unit of the 𝑛 units of a sub-

region in a grid system, is the unit-specific built portion. 𝑃𝑖  is the built portion by the 

unit i divided by the total built portion of the nine units sub-region where 𝑖 is the central 

unit. For instance, as in Figure 3, the entropy (𝐻) for the 9-units sub-area where 𝐺5 it 

the central unit with 𝐺5 value. 𝑃𝑖   is that 𝐺5 is divided by 𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝐺5, 𝐺6,
𝐺7, 𝐺8 and 𝐺9 values. 𝑃𝑖  multiplied by 𝑙𝑜𝑔𝑏(1/𝑃𝑖) where the base for the logarithm is 

2. 𝐻𝑖  is calculated by taking the sum of each of the nine 𝑃𝑖  values in the 9-units system. 

Maximum adjacency in Figures 3 and 4 refers to the rule that for each unit that is 

adjacent to 8 connected units can only be calculated P. In other words, the units by the 

grid edges are exempted in entropy calculation as illustrated in Figure 4 since they do 

not meet this criterion. 

 

𝐺𝑖 =
𝐵𝑢𝑖𝑙𝑡  𝑝𝑜𝑟𝑡𝑖𝑜𝑛  𝑜𝑓  𝑝𝑖𝑥𝑒𝑙  𝑖

𝑇𝑜𝑡𝑎𝑙  𝑏𝑢𝑖𝑙𝑡  𝑝𝑖𝑥𝑒𝑙  𝑎𝑟𝑒𝑎
                                            (1) 

 

𝑃𝑖 = 𝐺𝑖/ 𝐺𝑖
𝑛
𝑖                                                       (2) 

 

𝐻𝑖 =  𝑃𝑖 ∙ 𝑙𝑜𝑔  
1

𝑃𝑖
                                                 (3)              

Each grid unit in Figure 3 matches a particular space and thus a particular portion of a 

morphologic occurrence represented by a 𝐺 value. If a unit partially frames a building 

or a group of buildings, the algorithm as in equation 1, assigns a ratio for the area of the 

built part divided by the total unit area depending on the scale of the grid. It assigns 

𝐺 = 0  when the unit area is totally no-building, and 𝐺 = 1 when it fully frames a 

building or group of buildings.  
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Figure 4. Exempted units since they do not meet the maximum adjacency 

 rule in calculating the P values 

 

IQR (Interquartile Range) is a statistical data measuring method that does a 

discretization for the data with different spreads. It arranges the values from the smallest 

to the biggest. For discretization of the deviations along the data, IQR plays a role in 

extracting the “middle fifty” where it draws a specified data as graphed using the Box 

and Whisker Plot in Figure 5. The extremes of the data eliminated, and it is where the 

bulk, middle fifty, of the data falls in. It is preferred over many other measures of spread 

in statistics when reporting about multivariate data sets. Because each output is scale-

dependent, the ranges of the quartiles change as the scale of the analysis changes. In 

other words, each IQR for a specific scale relies on the changing morphologic states that 

are framed by different size of grid units. By the IQR method, each output dataset is 

reduced to a single value. Multiple analyses for varying scales allow generating multiple 

IQRs.  

The total sum of Entropy-IQRs for various scale levels gives the outcome of the 

study. Knowing the values of quartiles, 𝑄1 and 𝑄3, has critical importance. The 

position of the quartiles, between 0, 00 and 1, 00, can be highly distinct, somehow close 

to each other or juxtaposed which at the end explains how the IQR is created in fact. 

When the quartiles are located distinctly far from each other, IQR gets a higher value. 

This also points to the deviations that exist along the entropy dataset. The remarkable 

deviations in the dataset point to the remarkable differences among the morphologic 

formations framed by the grid units, in other words among the 𝐺 values, unit based built 

probability. The differences gradually affect the P as mentioned in above equation (2), 

the relational probability of total nine adjacent units as seen in Figure 3, and thus the 

entropy (𝐻) value in equation (3) explained above. 

 
 

Figure 5. Box and Whisker Plot. Generating IQR statistical 

 value for a multivariate dataset 
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3. Entropic Interaction among the units of a grid system superimposed  

         a built area  

 

Entropic interaction is a state of tension might evolve into a process of 

adaptation towards a new complexity which in nature leads to uncertainty since the 

energy of things cannot be captured forever and constantly transferred. Salingaros 

(2018) states; adaptation generates useful complexity through a feedback among diverse 

complexities. These complexities can be created between imposed & self-generated 

complexities or imposed & imposed ones. Cities, one of the biggest inventions of 

human-being, are in constant change in several size and scales so that the adaptation 

that cities experience is a good example of this phenomena. Salingaros (2018) however 

notes that building the wrong type of complexity results in dysfunctional buildings that 

leads to waste of enormous energy resources to maintain. This is also quite relevant 

with the geographic and spatial relatedness that Tobler draws in “first law of 

geography.” What is more related will naturally adapt easier and faster using optimal 

energy that leads to maximum efficiency. Information entropy theory in this research is 

employed to unearth the measure or degree of a tendency towards uncertainty through 

this adaptation.  

Entropic Interaction, in addition to the multi-scalar analysis, is the second data-

visualization function of the tool. Principally entropy indicates a level of the tendency 

towards uncertainty or disorderliness. Higher entropy means a higher tendency towards 

uncertainty. From the spatial relatedness point of view, a particular built area framed by 

a grid unit is spatially and geographically related with its adjacent units and intrinsically 

through each other’s entropic states. In other words, there is constant interaction among 

the system parts. This can be visualized as an entropic interaction modeling approach. 

 

 
 

Figure  6. Adjacent grid units with entropy values and the way they create a joint force 

 

Each grid system highlights the vertices of each unit area that they intersect. Mutual 

effect interaction, described by Brannon (2008), is here interpreted as the displacement 

(deformation) of the four vertices of each unit due to the forces generated by the entropy 

values as explained in as in Figures 6 and 7. Mutual effect deformation, in entropic 

interaction, is interpreted as the displacement of the four vertices of each grid unit due 

to the joint forces generated by different entropic zones aligned by each vertex. The 

displacement of the vertices is due to the joint strength of the entropic intensities 

belonging to the connected units. Simply the higher entropy pulls stronger and thus 

deforms more. By using the Centripetal Catmull-Rom curves algorithm (Yuksel et al., 

2011), all the vertices are then reconnected via first by straight lines and then curves as 
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in Figure 7. There are also other widely used interpolation curves with the same 

properties (NURBS, B-Splines, etc). 

 

   
 

Figure 7. Displacement of the vertices and reconnection via straight lines and 

straight lines converted to the curves 

 

4.  Hypothetical Case Studies 

 

Case Group A: A1 & A2  

 
Case Group B: B1 & B2 & B3 

 
 

Case Group C: C1 & C2 

 
Figure 8. Three groups of hypothetical case study morphologic formations 
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Three groups of hypothetical case study configurations with slight or excessive 

differences have been prepared to analyze and see what kind of entropic changes are 

triggered by what sort of configurational changes in the order of the pattern or 

morphologic layout in each case. The particular hypothetical cases might show 

excessively transformed versions of different configurations. Equivalent units through 

changing grids of different scales frame varying morphologic formations. Some 

morphologic formations are purposefully as simple as to be able to explain the cause-

effect relationships. All of the analyses have been done using the same grid scales with 

particular pixels. In doing so, each hypothetical configuration will allow grasping the 

order and entropic relationships from Shannon’s Entropy point of view. The analyses, 

besides generating MSA (multi-scalar analysis) graphs and MSA Data Tables, also 

helped to generate 1) unit-specific morphologic probability (G) visualizations, and 2) 

Entropic interaction (EI) visualizations. In each visualization, we are able to see the 

relative effect of micro-spatial changes upon the entire formation. Small or large, every 

single change creates a new morpho-information. However, it is a change in the 

vectorial data. A vectorial data is the type of data that we know the specific location in 

the real-world system. It might be represented using points, lines and areas. The term 

scalar is a linear algebra term. It helps to distinguish a single number from another 

scalar data no matter in what purpose it is used. The vectorial nature of spatial 

relatedness, using the method in this study, is converted to the scalar data using 

Shannon’s entropy.  

Each of the seven hypothetical case studies, in Figure 8, have legible and 

definite layouts. Not to get confused in understanding the morphologic-change & 

entropic outcome cause-effect relationship, each has been designed purposely, step by 

step, to see what happens in entropic data answering to the fundamental morphologic 

changes. To achieve this, the same grid-scale levels have been used for all of the case 

study analyses. Grid scales that have been used are: 100 : 15px.15px; 200:30px.30px; 

300:45px.45px; 400:60px.60px; 500:75px.75px; 600:90px.90px; 700:105px.105px; 

800:120px.120px; 900:135px.135px; 1000:150px.150px. For all the case studies, a 

same single grid-scale level could have been used. However, that would not allow 

monitoring the change in the entropic state of the overall layout answering to the grid-

units from small to the large sizes.  

Hypothetical Cases A1 & A2: 2 Different 1024 x 1024 pixels case areas 

 
Figure 9. Hypothetical cases A1 & A2 

 

Configurations : A1: 4 equivalent units squared by the center, A2: 

4 equivalent units individually located by the 

corners of a square 

ΣH-IQRs    : A1:0,1bit & A2:0,0bit 



NEW DESIGN IDEAS, V.2, N.2, 2018 

 

 
86 

 

 

 
Figure 10. Analyses for the grids of varying scale levels superimposed upon the raw data A1 case study 

area and G (Upper) and EI (Lower) visualizations 
 

 

 
Figure 11. Analyses for the grids of varying scale levels superimposed upon the raw data A2 case study 

area and G (Upper) and EI (Lower) visualizations 
 

 
 

Figure 12. MSA graphs for the hypothetical cases A1 & A2 
 

Table 1. MSA Data Table for the hypothetical case A1 

Grid 

Scale 

Level 

PA 

(Pixel  

Area ) 

Total 

Cell 

NA 

Cell 

(exempted) 

% G-IQR G-Q1 G-Q3 H-IQR H-Q1 H-Q3 

100 15px.15px            4761 272 5.7 0,000 0,000 0,000 0,000 0,000 0,000 

200 30px.30px            1225 136 11.1 0,000 0,000 0,000 0,000 0,000 0,000 

300 45px.45px 529 88 16.6 0,000 0,000 0,000 0,000 0,000 0,000 

400 60px.60px 324 68 20.9 0,000 0,000 0,000 0,000 0,000 0,000 

500 75px.75px 196 52 26.5 0,000 0,000 0,000 0,000 0,000 0,000 

600 90px.90px 144 44 30.5 0,000 0,000 0,000 0,000 0,000 0,000 

700 105px.105px 100 36 36.0 0,000 0,000 0,000 0,000 0,000 0,000 

800 120px.120px            81 32 39.5 0,000 0,000 0,000 0,000 0,000 0,000 

900 135px.135px 64 28 43.7 0,000 0,000 0,000 0,020 0,000 0,150 

1000 150px.150px 49 24 48,9 0,000 0,000 0,000 0,080 0,000 0,080 
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Table 2. MSA Data Table for the hypothetical case A2 

 

Grid 

Scale 

Level 

PA 

(Pixel  

Area ) 

Total 

Cell 

NA 

Cell 

(exempted) 

% G-IQR G-Q1 G-Q3 H-IQR H-Q1 H-Q3 

100 15px.15px            4761 272 5.7 0,000 0,000 0,000 0,000 0,000 0,000 

200 30px.30px            1225 136 11.1 0,000 0,000 0,000 0,000 0,000 0,000 

300 45px.45px 529 88 16.6 0,000 0,000 0,000 0,000 0,000 0,000 

400 60px.60px 324 68 20.9 0,000 0,000 0,000 0,000 0,000 0,000 

500 75px.75px 196 52 26.5 0,000 0,000 0,000 0,000 0,000 0,000 

600 90px.90px 144 44 30.5 0,000 0,000 0,000 0,000 0,000 0,000 

700 105px.105px 100 36 36.0 0,000 0,000 0,000 0,000 0,000 0,000 

800 120px.120px            81 32 39.5 0,000 0,000 0,000 0,000 0,000 0,000 

900 135px.135px 64 28 43.7 0,000 0,000 0,000 0,000 0,000 0,000 

1000 150px.150px 49 24 48,9 0,000 0,000 0,000 0,000 0,000 0,000 

 

The A1 hypothetical case has been designed as 4 equivalent units squared by the center 

of the area forming a solid square geometrically situated exactly by the center. The 

super-block, that acts a single built entity, is an enclosed form that never interacts with 

the surrounding large open space. The form, no doubt, defines a monolithic and 

introvert solid. The analysis results, in Table 1, indicate that the quartiles, H-Q1 and H-

Q3,  that define the H-IQR start to affect the quartiles in 900 and 1000 grid-scale levels. 

In other words, the H-IQR values start to be higher than 0,00 from 900. This is because 

the total size of open spaces compared to the total size of the identical blocks is far 

larger in general so that the 𝐺 values in the maximum adjacent system (nine-units 

system) start to create H values as the grid unit sizes get larger. The third quartiles of the 

H datasets generated for 900 and 1000 grid scales become higher than 0,00. Logically 

the outcomes of the analysis indicate that the degree or intensity of spatial change is 

about the scale level we examine the relationality of morpho-information that occurs in 

a particular grid scale level. ΣH-IQR is 0,1bit. 

The A2 hypothetical case has been designed as four equivalent units individually 

located by the corners of the case area forming a symmetrically perfect square in the 

equal distance to the center. In contrary to the previous hypothetical case of A1, the A2 

case study area defines a larger possibility of interactions among the built and non-built 

areas. The layout is monolithic and allows the user to examine what happens when a 

super-block gets equally dismantled into four identical sub-blocks and each locates in 

the same distance to the center. Similar to the previous case of A1, there is still a large 

open space in the system what shapes the quartiles, as seen in Table 2, for all the grid-

scale levels. In all grid-scale levels, both the G and H quartiles and thus the IQRs come 

out as 0,00. This is obviously due to one reason: the built entities by the corners, in any 

grid-scale level, do not get the ability to affect first and third quartiles (Q3 and Q1). The 

open space keeps creating the Q1 and Q3 values for all the grid-scale levels as 0,00 

meaning non-built nine-units system where there is no built entity to trigger an entropic 

state that dominates the G and thus H datasets as seen in Figure 11. When comparing 

the case A1 with the A2, one can say that not only the way a built entity is clustered but 

also the location of the spatial entities entropically matters. This outcome is supported 

by Leibovici’s suggestion of generating entropy for spatial distributions requires 

considering the adjacencies as a proximity and relationality factor. ΣH-IQR for the A1 

is 0,0bit meaning there is no entropy in the system. As a result, the cumulative H-IQR is 

lower for the case A1 when compared to the case A2, while in the case A1, the mono-
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block, affects a greater area in entropic interaction while the equally dismantled sub-

blocks of A2 by its equivalent corners until 900 scale.  

Hypothetical Cases B1 & B2 & B3 : 3 Different 1024 x 1024 pixels case areas 

 
Figure 13. Hypothetical cases B1 & B2 & B3 

 

Configurations : B1: Full Chessboard pattern of equivalent pieces; B2: 

Chessboard pattern with eight diagonally missing equivalent 

pieces B3: Eight equivalent pieces diagonally located from upper 

left to lower right corners 

ΣH-IQRs  : 0,64bit; 0,9bit; 0,57bit. 

 

 
 

Figure 14. Analyses for the grids of varying scale levels superimposed upon the raw data B1  

and G (Upper) and EI (Lower) visualizations 

 

 
 

Figure 15. Analyses for the grids of varying scale levels superimposed upon the raw data B2  

and G (Upper) and EI (Lower) visualizations 
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Figure 16. Analyses for the grids of varying scale levels superimposed upon the raw data B3  

and G (Upper) and EI (Lower) visualizations 

 

 

 
 

Figure 17.  MSA graphs for the hypothetical cases B1, B2, and B3 case studies 

 

 
Table 3. MSA Data Table for the hypothetical case B1 

 
Grid 

Scale 

Level 

PA 

(Pixel  

Area ) 

Total 

Cell 

NA 

Cell 

(exempted) 

% G-IQR G-Q1 G-Q3 H-IQR H-Q1 H-Q3 

100 15px.15px            4761 272 5.7 1 0 1 0.12 0 0.12 

200 30px.30px            1225 136 11.1 1 0 1 0.13 0 0.13 

300 45px.45px 529 88 16.6 0.87 0.06 0.93 0.11 0.03 0.14 

400 60px.60px 324 68 20.9 0.73 0.13 0.86 0.07 0.07 0.14 

500 75px.75px 196 52 26.5 0.53 0.24 0.77 0.07 0.075 0.14 

600 90px.90px 144 44 30.5 0.45 0.26 0.705 0.05 0.08 0.13 

700 105px.105px 100 36 36.0 0.28 0.37 0.65 0.02 0.1 0.12 

800 120px.120px            81 32 39.5 0.26 0.365 0.62 0.02 0.1 0.12 

900 135px.135px 64 28 43.7 0.36 0.315 0.675 0.04 0.09 0.13 

1000 150px.150px 49 24 48,9 0.19 0.38 0.57 0.01 0.11 0.12 
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Table 4. MSA Data Table for the hypothetical case B2 

 
Grid 

Scale 

Level 

PA 

(Pixel  

Area ) 

Total 

Cell 

NA 

Cell 

(exempted) 

% G-IQR G-Q1 G-Q3 H-IQR H-Q1 H-Q3 

100 15px.15px            4761 272 5.7 1 0 1 0.11 0 0.11 

200 30px.30px            1225 136 11.1 0.93 0 0.93 0.12 0 0.12 

300 45px.45px 529 88 16.6 0.78 0 0.78 0.13 0 0.13 

400 60px.60px 324 68 20.9 0.7 0 0.7 0.13 0 0.13 

500 75px.75px 196 52 26.5 0.68 0 0.68 0.13 0 0.13 

600 90px.90px 144 44 30.5 0.61 0 0.61 0.11 0.02 0.13 

700 105px.105px 100 36 36.0 0.48 0.08 0.56 0.06 0.065 0.125 

800 120px.120px            81 32 39.5 0.44 0.13 0.57 0.04 0.08 0.12 

900 135px.135px 64 28 43.7 0.49 0.14 0.63 0.04 0.09 0.13 

1000 150px.150px 49 24 48,9 0.3 0.24 0.54 0.03 0.09 0.12 

 
Table 5. MSA Data Table for the hypothetical case B3 

 
Grid 

Scale 

Level 

PA 

(Pixel  

Area ) 

Total 

Cell 

NA 

Cell 

(exempted) 

% G-IQR G-Q1 G-Q3 H-IQR H-Q1 H-Q3 

100 15px.15px            4761 272 5.7 0 0 0 0 0 0 

200 30px.30px            1225 136 11.1 0 0 0 0 0 0 

300 45px.45px 529 88 16.6 0 0 0 0 0 0 

400 60px.60px 324 68 20.9 0 0 0 0 0 0 

500 75px.75px 196 52 26.5 0.05 0 0.05 0.07 0 0.065 

600 90px.90px 144 44 30.5 0.04 0 0.04 0.06 0 0.06 

700 105px.105px 100 36 36.0 0.12 0 0.12 0.12 0 0.12 

800 120px.120px            81 32 39.5 0.15 0 0.145 0.11 0 0.11 

900 135px.135px 64 28 43.7 0.14 0 0.135 0.1 0 0.1 

1000 150px.150px 49 24 48,9 0.13 0 0.125 0.11 0 0.105 

 

Case B1 is a perfect chessboard pattern with no missing pieces and distortion. 

As the grid unit size increases, the co-effect of the adjacent units gets smaller and so the 

relational effect of the adjacent units does. In such a monotonous context of identical 

massive sub-constituents, the system reveals approximate entropic states (H-IQR) in 

each scale level due to recurring scaling hierarchy through the fractal geometry in every 

scale level. One can conclude that such kind of order implies stabile or approximate 

entropic situations since the unit-specific G values stay same or approximate. Entropic 

stability might be a positive state, yet it is the topic of another discussion since massive 

multi-scalar and fractal may not always guarantee wholeness in spatial settings. 

Alexander himself also confirms this remark in the “Nature of Order” series.  The 

cumulative H-IQR of this system is 0,64bit. 

The hypothetical case B2 is another chessboard pattern with eight missing pieces 

in a crosswise way from southeast to northwest. The in-between space, between two 

identical clusters, remind a definitive torn or a border that disconnects every possible 

spatial interaction while enables a wide range of potential interventions. This situation, 

by all means, creates uncertainty about the design process and more specifically draws a 

state of openness to every possible spatial intervention. The definition of information 

entropy says that the higher number of data types in a particular information, the lower 

the probability of the same type of data to get together. In spatial terms, the higher the 

morphologic ability, the more uncertainty triggered in space. This analogy is being 

supported by the high cumulative entropy of 0,9bit,  that the system reveals. Looking at 
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Table 4, the analysis results indicate that as the grid scales get larger, so does the units 

and the entropic state emerges through the interaction of the adjacent units that getting 

insignificant and decreasing the H-IQR values. Entropic Interaction, in accordance with 

the morphologic formation of the case, gets shaped creating highly deformed units 

overlaid upon the spaces that bear scale jumps between built and unbuilt. That means 

the more atypical and undefined spaces in a built area, the larger the uncertainty and the 

bigger risk of spatial interventions.   

Case B3 is a layout formed by eight equivalent spatial entities diagonally located 

from the upper left to the lower right corners. Each of the eight structural entities 

interacts with surrounding open space at maximum:  each through four edges and thirty-

two edges in total, in all system. This fact obviously brings, no matter what the grid 

scale is, a great deal of morphologic interplay, scale jumps and thus a larger interaction 

potential regarding the scale of the grid used for the analysis. The smaller the unit size, 

the lower the G and thus H quartiles, as seen in above Table 5, and the larger the unit 

size, the larger the G and thus H values and thus growing G-Q3 and H-Q3 quartiles’ 

values. This is because of until the 500 grid scale, the open space affects both first and 

third quartiles. After 500 grid-scale level, even if not the first quartiles, the third 

quartiles are affected by the growing units sizes and they start to affect both third 

quartiles and thus the H-IQR. In the case study B3, there is a visible balance between G-

IQRs and H-IQRs. In other words, the rise of “quartile-able” built formation creates and 

alters the entropic state. For this hypothetical case, one can say that the higher 

possibility of solid-void interactions, the more volatile G, and H states. This finding 

proves that entropic state is about the level of analysis. Different deformations in the EI 

visualizations for different grid-scale levels prove this finding. Entropic Interaction, in 

accordance with the morphologic formation of the case, the EI gets shaped creating 

highly deformed units overlaid upon the empty spaces. That means the more undefined 

spaces in a built area, the larger the uncertainty, the bigger risk of spatial interventions 

as seen in Figure 17.  The cumulative H-IQR for the Case B3 is 0,57bit. 

 

Hypothetical Cases C1 & C2: 2 Different 1024 x 1024 pixels case areas 

 
Figure 18. Hypothetical cases C1 & C2 

 

Configurations        : C1: Eight equivalent units with two pairs of identical and 

symmetrical modules, C2: Eight equivalent units grouped in 

total two identical and symmetrical modules 

ΣH-IQRs     : 0,60bit, 0,67bit 
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Figure 19. Analyses for the grids of varying scale levels superimposed upon the raw data C1  

and G (Upper) and EI (Lower) visualizations 

 

 
 

Figure 20. Analyses for the grids of varying scale levels superimposed upon the raw data C2  

and G (Upper) and EI (Lower) visualizations 

 

 
 

Figure 21. MSA graph for the hypothetical cases of C1 and C2 

 

Table 6. MSA Data Table for the hypothetical case C1 

 

Grid 

Scale 

Level 

PA 

(Pixel  

Area ) 

Total 

Cell 

NA 

Cell 

(exempted) 

% G-IQR G-Q1 G-Q3 H-IQR H-Q1 H-Q3 

100 15px.15px            4761 272 5.7 0 0 0 0 0 0 

200 30px.30px            1225 136 11.1 0 0 0 0 0 0 

300 45px.45px 529 88 16.6 0 0 0 0 0 0 

400 60px.60px 324 68 20.9 0 0 0 0 0 0 

500 75px.75px 196 52 26.5 0 0 0 0.07 0 0.07 

600 90px.90px 144 44 30.5 0 0 0 0.09 0 0.085 

700 105px.105px 100 36 36.0 0.01 0 0 0.12 0 0.12 

800 120px.120px            81 32 39.5 0.06 0 0 0.11 0 0.11 

900 135px.135px 64 28 43.7 0.1 0 0 0.1 0 0.1 

1000 150px.150px 49 24 48,9 0.12 0 0 0.12 0 0.12 
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Table 7. MSA Data Table for the hypothetical case C2 

 
Grid 

Scale 

Level 

PA 

(Pixel  

Area ) 

Total 

Cell 

NA 

Cell 

(exempted) 

% G-IQR G-Q1 G-Q3 H-IQR H-Q1 H-Q3 

100 15px.15px            4761 272 5.7 0 0 0 0 0 0 

200 30px.30px            1225 136 11.1 0 0 0 0 0 0 

300 45px.45px 529 88 16.6 0 0 0 0 0 0 

400 60px.60px 324 68 20.9 0 0 0 0 0 0 

500 75px.75px 196 52 26.5 0 0 0 0.07 0 0.065 

600 90px.90px 144 44 30.5 0 0 0 0.09 0 0.085 

700 105px.105px 100 36 36.0 0 0 0 0.13 0 0.13 

800 120px.120px            81 32 39.5 0 0 0 0.12 0 0.12 

900 135px.135px 64 28 43.7 0.05 0 0.05 0.12 0 0.12 

1000 150px.150px 49 24 48,9 0.09 0 0.09 0.15 0 0.145 

 

The hypothetical case C1 is different from the case B3 has less number of 

interacting edges, in other words, a smaller number of scale jumps, for all of the eight 

spatial entities from 32 to 20 in total. As a result, the built system’s overall potential for 

interaction decreases. This brings a smaller number of scale-jumps and less different 

type of morphologic-interplay. The lower the probability, the lower the uncertainty. 

Compared to Case B3, the Case C1 is more monotonous with two identical super-blocks 

in upper and lower ends. As in Table 6, the cumulative entropy, ΣH-IQR, for the Case 

C1 is 0,60bit, slightly higher, and implying fewer wholeness, compared to the case B3 

with 0,57bit ΣH-IQR. In the EI visuals in Figure 19, it is possible to see the most 

deformed units are those that are overlaid upon the built formations with most scale 

jumps.  

The C2 case is formed through eight equivalent units grouped in two identical 

and symmetrical modules and centrally situated in equivalent distance, symmetrical 

location, and position to each other. This hypothetical case study is important about its 

potential to expose how two non-interacting identical built entities behave in generating 

the G and H quartiles. This case study, looking at the H and G-IQR columns of the 

MSA Data Table 7, indicates that the generation of H values is a relational process and 

the adjacent units’ built probabilities affect the H values. See the G-Q3 values for 500-

600-700 and 800 grid-scale levels where there are H-Q3 values. This finding proves that 

the scholars’ suggestion for an adjacency factor is a valid and essential need to 

investigate the relative configuration of built blocks in search of the level of uncertainty 

gets revealed through such relationality.  The way it is established in the context of the 

proposed method in this study is mostly verified in this hypothetical case. The 

cumulative H-IQR value for the Case C2 is 0,67bit slightly higher than C1 that implies 

a bigger potential towards spatial uncertainty. 

 

5. Results and Conclusion 

 

To conclude; Cities changes constantly in different size and portions and in 

different rhythms. This change inevitably affects the scaling hierarchy of cities what 

makes everything work in balance. Conventional methods in GIS help to measure and 

explains spatial change via metric measurements of geographic causalities and geo-

located mappings. Proposed method in this paper introduces an analytical approach that 
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measures space on a relational basis across varying scales and generates a value of 

wholeness.    

In Alexander’s texts, the concept of wholeness and the life for a spatial setting is 

a broad notion, and the connection between two concepts is controversial in academia. 

Building a solid and conclusive analogy between wholeness and life is not always as 

clear as scholars claim in different texts.  However, the entire question of wholeness is a 

large, flexible and not so clear phenomenon and there is a loose relationship between 

wholeness and life (Ekinoglu & Kubat, 2017). In another word, beyond strict definitions 

of “dead” and “alive” life in the space can exist in various degrees in-between. 

Nevertheless, it is hard to construct a direct and determinant relationship since different 

levels of life can exist in space with various degrees of wholeness. To avoid this 

ambiguity, in this study, the concept of wholeness that Alexander depicts is being 

referred as a quality of “completeness” – an inverse quality of uncertainty - that emerges 

through the relationships among the sub-constituents & the whole system relationships 

across scales. (Ekinoglu et al., 2017). 

Three groups of hypothetical case studies with slight and excessive differences 

demonstrate meaningful relationships between the scaling characteristics of the spatial 

layouts and the entropy values created.  The critical finding is that the quartiles allow 

controlling the extremes of the scalar data and the user of the analysis tool can be 

specific about the built subunits that disrupt and undermine the scaling hierarchy and 

lead to high entropy for that particular scale level. This will minimize the loss of scaling 

signature and the harming effects of new developments in existing urban areas. 

For practitioners and local governments, the proposed method is allowing to run 

evidence-based measuring of urban change scenarios in the built environment and 

testing the after-effects of design and planning scenarios before the field work. In doing 

so, local governments and policymakers can monitor environmental change in the 

development of urban areas for human-wellbeing. 

Results derived from the case studies reveal and supported by the below 

findings; 

1- Not only the way the spatial entities get clustered but also their geographic 

distributions entropically matters. This outcome is supported by Leibovici’s (2009) 

suggestion about generating entropy for spatial distributions requires considering the 

proximities as an adjacency factor. Such kind of adjacency system is a valid need to 

investigate the relative configuration of built blocks in search of the level of uncertainty, 

entropy, revealed through such relationality. 

2- The higher possibility of solid-void interactions, the more volatile G (unit-

specific-built-probability) and thus H (entropy of a max adjacent unit) states. This 

finding proves that entropic state, from the morphologic layout point of view, is a scale-

dependent quality, in other words, the scale of the grid system that frames the 

morphologic relations through equivalent units is a major determinant factor. 

3- The less and balanced scale-jumps in the analyzed spatial setting, the less 

different type of morphologic-interplay. This brings a less volatile G (unit-specific-

built-probability) and H (entropy of a max adjacent unit) values, if not zero or close to 

zero, in a stable way. 

4- As a common finding in all the hypothetical case studies, built portions that 

fall into grid units start to affect the Q1 and Q3 in larger scale levels where the quantity 

of the grid units start to decrease –larger scales generate larger but less amount of grid 

units- and the built portions start to fall into the units more than before and affect the 
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quartiles by the end of the first 25% (Q1) and by the beginning of the last 25% (Q3) of 

the data in interquartile range statistics method’s terms. 

5- Looking at the MSA graphs, one can say that there is an obvious parallel 

movement in up and downshifts of the G-IQRs and H-IQRs on the MSA graphs and this 

indicates that changing grid scales eventually reproduce G datasets, which in return 

reproduce H datasets. This happens because there is a scale-led co-dependency between 

each other.    

6- This implies that even with the missing built pieces that are identical in 

quantity and structural & geometric features, their geographic positions do matter in the 

generation of entropy for a particular area. 

7- Somewhat identically grouped clusters remind a definitive torn or an in-

between border that disconnects every possible spatial interaction while it also enables a 

wide range of different potential scenarios. Such a situation, by all means, creates 

uncertainty about the design process and more specifically about possible spatial 

interventions. By definition of information entropy, the higher the number of data types 

in a particular information, the lower the probability of the same type of data to get 

together. In spatial terms, the higher morphologic ability in a space, the more 

uncertainty it triggers in design thinking. 

8- In a monotonous context of identical massive sub-constituents, the system 

reveals approximate entropic states (H-IQR) in each scale level due to recurring scaling 

hierarchy and repeating fractal geometry in every scale level. One can conclude that 

such kind of order implies stable or repeatedly approximate entropic situations since the 

unit-specific G values stay same or approximate in varying scale levels. Whether or not 

such kind of entropic stability is a positive spatial quality is the topic of another study 

since massive multi-scalar order does not guarantee wholeness. Alexander (2002-2005) 

himself also confirms this remark in the “Nature of Order”.  

9- Briefly, the method is set upon a logic of bilateral flow of spatial push and 

pull factors based on scale and distance. Entropic Interaction way of spatial modeling in 

this sense allows designers to see spatial effects of massive and volumetric relations 

through a deformed grid and be proactive against scale jumps that might harm the 

scaling hierarchy in the built environment in several topics from energy to socio-

economic issues. 
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